Design of Low-Noise CMOS Image Sensor Using a Hybrid-Correlated Multiple Sampling Technique

Author:

Youn Seung Ju1,Yun Su Yeon1,Lee Hoyeon1,Park Kwang Jin1,Kim Jiwon1,Kim Soo Youn1ORCID

Affiliation:

1. Department of Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

Abstract

We present a 320 × 240 CMOS image sensor (CIS) using the proposed hybrid-correlated multiple sampling (HMS) technique with an adaptive dual-gain analog-to-digital converter (ADC). The proposed HMS improves the noise characteristics under low illumination by adjusting the ADC gain according to the incident light on the pixels. Depending on whether it is less than or greater than 1/4 of the full output voltage range from pixels, either correlated multiple sampling or conventional-correlated double sampling (CDS) is used with different slopes of the ramping signals. The proposed CIS achieves 11-bit resolution of the ADC using an up-down counter that controls the LSB depending on the ramping signals used. The sensor was fabricated using a 0.11 μm CIS process, and the total chip area was 2.55 mm × 4.3 mm. Compared to the conventional CDS, the measurement results showed that the maximum dark random noise was reduced by 26.7% with the proposed HMS, and the maximum figure of merit was improved by 49.1%. The total power consumption was 5.1 mW at 19 frames per second with analog, pixel, and digital supply voltages of 3.3 V, 3.3 V, and 1.5 V, respectively.

Funder

Ministry of Science and ICT

Technology Innovation Program

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3