Artificial Intelligence and Machine Learning in Energy Conversion and Management

Author:

Mira Konstantinos1,Bugiotti Francesca12,Morosuk Tatiana3ORCID

Affiliation:

1. Computer Science Department, CentraleSupélec Paris-Saclay University, 3 Rue Joliot Curie, Gif-sur-Yvette, 91190 Paris, France

2. Le Laboratoire de Recherche en Informatique, CNRS, Paris-Saclay University, 6 Rue Noetzlin, Gif-sur-Yvette, 91190 Orsay, France

3. Institute for Energy Engineering, Technische Universität Berlin, Marchstr. 18, 10587 Berlin, Germany

Abstract

In the modern era, where the global energy sector is transforming to meet the decarbonization goal, cutting-edge information technology integration, artificial intelligence, and machine learning have emerged to boost energy conversion and management innovations. Incorporating artificial intelligence and machine learning into energy conversion, storage, and distribution fields presents exciting prospects for optimizing energy conversion processes and shaping national and global energy markets. This integration rapidly grows and demonstrates promising advancements and successful practical implementations. This paper comprehensively examines the current state of applying artificial intelligence and machine learning algorithms in energy conversion and management evaluation and optimization tasks. It highlights the latest developments and the most promising algorithms and assesses their merits and drawbacks, encompassing specific applications and relevant scenarios. Furthermore, the authors propose recommendations to emphasize the prioritization of acquiring real-world experimental and simulated data and adopting standardized, explicit reporting in research publications. This review paper includes details on data size, accuracy, error rates achieved, and comparisons of algorithm performance against established benchmarks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference164 articles.

1. Karsten Würth (2022, November 07). What is the Kyoto Protocol?. Available online: https://unfccc.int/kyoto_protocol.

2. UNFCCC (2022, November 07). The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.

3. OP26 Outcomes (2022, November 07). UN Climate Change Conference UK 2021. Available online: https://ukcop26.org/the-conference/cop26-outcomes/.

4. IEA (2023, October 07). Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach. Available online: www.iea.org.

5. IEA (2022, November 07). Clean Energy Innovation, IEA. Available online: https://www.iea.org/reports/clean-energy-innovation.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3