Examining the Mechanism of Current Conduction at Varying Temperatures in Polyimide Nanocomposite Films

Author:

Akram Shakeel12ORCID,Haq Inzamam Ul1ORCID,Castellon Jerome3,Nazir M. Tariq4

Affiliation:

1. College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China

2. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

3. Institut d’Electronique et des Systèmes, University of Montpellier, 34090 Montpellier, France

4. School of Engineering, RMIT University, Melbourne, VIC 3000, Australia

Abstract

Charge injection and conduction are fundamental phenomena that occur in dielectric materials when subjected to both low and high electric fields. This paper delves into the exploration of various conduction mechanisms, including space-charge-limited current (SCLC), Schottky charge injection, Poole–Frenkel, and hopping charge conduction, to elucidate the prevailing conduction mechanism in single and multilayer polyimide (PI)/SiO2 nanocomposite films across a range of temperatures. At elevated electric field strengths, the conduction behavior transitions from ohmic to exhibiting a non-linear current–voltage dependence. The investigation highlights that PI nanocomposite films display distinct conduction behaviors contingent on both the applied electric field and temperature conditions. The insights derived from this study provide valuable empirical groundwork and explanations for conducting current measurements in PI-based insulation systems, particularly in applications such as motor insulation for electric vehicles.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3