Optimum Design of a Reusable Spacecraft Launch System Using Electromagnetic Energy: An Artificial Intelligence GSO Algorithm

Author:

Gao Huayu12,Wei Zheng3,Zhang Xiang2,Wang Pei1,Lei Yuwei3,Fu Hui1,Zhou Daming1

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

3. Shaanxi Province Aerospace and Astronautics Propulsion Research Institute Co., Ltd., National Digital Publishing Base, No. 996, Tiangu 7th Road, High-tech Zone, Xi’an 710077, China

Abstract

Due to its advantages of high acceleration, reusability, environmental protection, safety, energy conservation, and efficiency, electromagnetic energy has been considered as an inevitable choice for future space launch technology. This paper proposes a novel three-level orbital launch approach based on a combination of a traditional two-level orbital launch method and an electromagnetic boost (EMB), in which the traditional two-level orbital launch consists of a turbine-based combined cycle (TBCC) and a reusable rocket (RR). Firstly, a mathematical model of a multi-stage coil electromagnetic boost system is established to develop the proposed three-level EMB-TBCC-RR orbital launch approach, achieving a horizontal take-off–horizontal landing (HTHL) reusable launch. In order to optimize the fuel quality of the energy system, an artificial intelligence algorithm parameters-sensitivity-based adaptive quantum-inspired glowworm swarm optimization (AQGSO)is proposed to improve the performance of the electromagnetic boosting system. Simulation results show that the proposed AQGSO improves the global optimization precision and convergence speed. By using the proposed EMB-TBCC-RR orbital launch system and the optimization approach, the required fuel weight was reduced by about 13 tons for the same launch mission, and the energy efficiency and reusability of the spacecraft was greatly improved. The spacecraft can be launched with more cargo capacity and increased payload. The proposed novel three-level orbital launch approach can help engineers to design and optimize the orbital launch system in the field of electromagnetic energy conversion and management.

Funder

Shaanxi Province Key Research and Development Plan

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3