The Influence of the Duration of Exposure to Direct Current on the Treatment Efficiency of Wastewater from Soilless Tomato Cultivation in a Bio-Electrochemical Reactor

Author:

Mielcarek Artur1ORCID,Bryszewski Kamil Łukasz1ORCID,Rodziewicz Joanna1ORCID,Kwietniewski Marian2,Janczukowicz Wojciech1,Kłobukowska Karolina1,Struk-Sokołowska Joanna3ORCID

Affiliation:

1. Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-719 Olsztyn, Poland

2. Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland

3. Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland

Abstract

The management of wastewater from soilless tomato cultivation poses a technological and economic challenge. Given the above, the aim of this study was to determine the treatment efficiency of wastewater from soilless tomato cultivation in a bio-electrochemical reactor under conditions of direct electric current flow. The treatment efficiency was tested in three time variants of wastewater exposure to the electric current: V1—24 h exposure phase; V2—12 h exposure phase/12 h no exposure phase; and V3—12 h no exposure phase/12 h exposure phase. Experiments were conducted with two organic substrates, sodium acetate and acetic acid, at the C/N ratio of 1.25, with a direct current intensity of 1.25 A·m−2 and hydraulic retention time of 24 h. The study results show the feasibility of achieving a satisfactory technological effect in a bio-electrochemical reactor without the need for electric current flow throughout the 24 h treatment cycle. From the energy consumption and technological standpoints, the most viable approach, ensuring 90.4 ± 1.6% and 94.9 ± 0.7% efficiencies of nitrogen and phosphorus removal, respectively, turned out to be feeding the reactor with sodium acetate and wastewater exposure to the electric current flow only during the first 12 h of the treatment cycle. The scope of the conducted research justifies its continuation in order to determine the optimal time for supplying electricity to the bio-electrochemical reactor and the impact of the C/N value on the nitrogen and COD effluent concentrations.

Funder

The National Centre for Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3