Short-Term Prediction for Indoor Temperature Control Using Artificial Neural Network

Author:

Park Byung Kyu1ORCID,Kim Charn-Jung2

Affiliation:

1. Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea

2. Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Recently, data-based artificial intelligence technology has been developing dramatically, and we are considering how to model, predict, and control complex systems. Energy system modeling and control have been developed in conjunction with building technology. This study investigates the use of an artificial neural network (ANN) for predicting indoor air temperature in a test room with windows on an entire side. Multilayer perceptron (MLP) models were constructed and trained using time series data obtained at one-second intervals. Several subsampling time steps of 1 s, 60 s, 300 s, 600 s, 900 s, 1800 s, and 3600 s were performed by considering the actual operation control mode in which the time interval is important. The performance indices of the neural networks were evaluated using various error metrics. Successful results were obtained and analyzed based on them. It was found that as the multi-step time interval increases, performance degrades. For system control designs, a shorter prediction horizon is suggested due to the increase in computational time, for instance, the limited computing capacity in a microcontroller. The MLP structure proved useful for short-term prediction of indoor air temperature, particularly when control horizons are set below 100. Furthermore, highly reliable results were obtained at multi-step time intervals of 300 s or less. For the multivariate model, both calculation time and data dispersion increased, resulting in worsened performance compared to the univariate model.

Funder

KMinistry of Land, Infrastructure and Transport of the Korean government through Korea Agency for Infrastructure Technology Advancemen

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference27 articles.

1. International Energy Agency (2023, September 19). Energy Systems, Buildings, Available online: https://www.iea.org/energy-system/buildings.

2. Introducing novel configurations for double-glazed windows with lower energy loss;Tafakkori;Sustain. Energy Technol. Assess.,2021

3. ASHRAE (2007). Handbook Fundamentals, SI, International Edition, 1997, ASHRAE Handbook—HVAC Applications.

4. Building energy prediction using artificial neural networks: A literature survey;Lu;Energy Build.,2021

5. Data-driven modeling of building thermal dynamics: Methodology and state of the art;Wang;Energy Build.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3