Demand-Side Electricity Load Forecasting Based on Time-Series Decomposition Combined with Kernel Extreme Learning Machine Improved by Sparrow Algorithm

Author:

Sun Liyuan1,Lin Yuang2,Pan Nan3ORCID,Fu Qiang4,Chen Liuyong3,Yang Junwei5

Affiliation:

1. Metrology Center, Yunnan Power Grid Co., Ltd., Kunming 650500, China

2. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

3. Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China

4. Marketing Department, Lijiang Power Supply Bureau, Ltd., Yunnan Power Grid Co., Kunming 650500, China

5. Longshine Technology Group Co., Ltd., Wuxi 214000, China

Abstract

With the rapid development of new power systems, power usage stations are becoming more diverse and complex. Fine-grained management of demand-side power load has become increasingly crucial. To address the accurate load forecasting needs for various demand-side power consumption types and provide data support for load management in diverse stations, this study proposes a load sequence noise reduction method. Initially, wavelet noise reduction is performed on the multiple types of load sequences collected by the power system. Subsequently, the northern goshawk optimization is employed to optimize the parameters of variational mode decomposition, ensuring the selection of the most suitable modal decomposition parameters for different load sequences. Next, the SSA–KELM model is employed to independently predict each sub-modal component. The predicted values for each sub-modal component are then aggregated to yield short-term load prediction results. The proposed load forecasting method has been verified using actual data collected from various types of power terminals. A comparison with popular load forecasting methods demonstrates the proposed method’s higher prediction accuracy and versatility. The average prediction results of load data in industrial stations can reach RMSE = 0.0098, MAE = 0.0078, MAPE = 1.3897%, and R2 = 0.9949. This method can be effectively applied to short-term load forecasting in multiple types of power stations, providing a reliable basis for accurate demand-side power load management and decision-making.

Funder

Science and Technology Project of China Southern Power Grid Co., Ltd.

Technical Reform Project of China Southern Power Grid Co., Ltd.

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3