Analysis of Offline Transient Power Oscillation and Its Suppression Method in the Microgrid with Multiple Virtual Synchronous Generators

Author:

Shan Liang1,Yang Bo1,Lu Shuai1

Affiliation:

1. School of Electrical Engineering, Chongqing University, Chongqing 400044, China

Abstract

When multiple Virtual Synchronous Generators (VSGs) operate in parallel in an islanded grid, power and frequency oscillations will occur when one VSG goes offline. However, the existing literature does not cover the related analysis and transient suppression schemes for this scenario. To analyze these complex high-order system dynamics, this paper first establishes an intuitive equivalent circuit model for multiple VSGs, and the frequency domain expressions of the multi-machine VSG system during the VSG offline transient simulation are then derived. Based on the multi-VSG model and its transient oscillations analysis, this paper further proposes a configuration scheme for the equivalent circuit parameters. Equivalently, the virtual inertia, damping coefficient and virtual impedance of the VSGs can be configured. With the proposed parameter configuration scheme, the power oscillation during the VSG offline transient can be eliminated, as verified by experiments with a microgrid lab platform using three VSGs. Compared with the existing multi-VSG studies, the proposed scheme is not only the first attempt to study the transient suppression when a VSG goes offline, but also is more intuitive in analysis and less complicated in the controller parameter tuning.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Review of Grid-Forming Control Studies Based on Virtual Synchronous Generators;2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3