Unsteady Magnetohydrodynamic Radiative Casson Nanofluid within Chemically Reactive Flow over a Stretchable Surface with Variable Thickness through a Porous Medium

Author:

Sedki Ahmed M.1,Qahiti Raed2

Affiliation:

1. Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

2. Department of Mathematics, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia

Abstract

This study presents a mathematical investigation into the phenomena of radiative heat with an unsteady MHD electrically conducting boundary layer of chemically reactive Casson nanofluid flow due to a pored stretchable sheet immersed in a porous medium in the presence of heat generation, thermophoretic force, and Brownian motion. The surface is assumed to be not flat, and has variable thickness. The magnetic field is time-dependent, and the chemical reaction coefficient is inversely varied with the distance. The nanofluid’s velocity, heat, and concentration at the surface are nonlinearly varied. A similarity transformation is introduced, and the controlling equations are converted into nondimensional forms involving many significant physical factors. The transformed forms are analyzed numerically using a computational method based on the finite difference scheme and Newton’s linearization procedure. The impact of the involved physical parameters is performed in graphical and tabular forms. Some special cases of the current work are compared with published studies, and an excellent agreement is obtained. The main results of the present work indicate that the higher values of the Casson parameter cause an increase in both the shear stress and heat flux, but a decrease in the mass flux. Also, it is noted that the chemical reaction, the nanoparticles’ volume, and the permeability factor enhance the effect the of Casson parameter on both the shear stress and heat flux, while the variable thickness and thermal radiation field reduce it; on the other hand, the variable thickness and nanoparticles’ volume enforce the influence of the Casson parameter on mass flux, but thermal radiation, the permeability factor, and chemical reaction decrease it. The present study has important applications in mechanical engineering and natural sciences. In addition, it has significant applications in devices used for blood transfusion, dialysis and cancer therapy.

Funder

Deanship of Scientific Research, Jazan University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3