Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City

Author:

Yang Yuanyuan1,Zhang Wenhui1,Liu Zhe2,Liu Dengfeng1ORCID,Huang Qiang1,Xia Jun3

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

2. PowerChina Guiyang Engineering Corporation Limited, Guiyang 550081, China

3. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

Abstract

The storm water management model (SWMM) has been used extensively to plan, implement, control, and evaluate low impact development facilities and other drainage systems to solve storm-related problems in sponge cities. However, the calibration of SWMM involves a variety of sensitive parameters and may bring significant uncertainties. Here we incorporated the distributed time variant gain model (DTVGM), a model with a simple structure and few parameters, into the SWMM (called DTVGM-SWMM) to reduce the complexity but keep the mechanistic representation of the hydrological process. The DTVGM runoff module parameters were calibrated and validated using the Nash–Sutcliffe efficiency (NSE), based on measured data and the results of SWMM. It was then coupled with the SWMM routing module to estimate catchment runoffs and outflows. Finally, the performance was evaluated using NSE (0.57~0.94), relative errors of the flow depth (−7.59~19.79%), and peak flow rate (−33.68~54.37%) under different storm events. These implied that the DTVGM-SWMM simulations were generally consistent with those of the control group, but underperformed in simulating peak flows. Overall, the proposed framework could reasonably estimate the runoff, especially the outflow process in the urban catchment. This study provides a simple and reliable method for urban stormwater simulation.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation Funded Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3