Effect of Warm Mix Asphalt (WMA) Antistripping Agent on Performance of Waste Engine Oil-Rejuvenated Asphalt Binders and Mixtures

Author:

Eltwati Ahmed1ORCID,Putra Jaya Ramadhansyah2ORCID,Mohamed Azman3,Jusli Euniza4ORCID,Al-Saffar Zaid56,Hainin Mohd Rosli3,Enieb Mahmoud7ORCID

Affiliation:

1. Department of Civil Engineering, University of Benghazi, Benghazi 12345, Libya

2. Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia

3. Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

4. Faculty of Engineering & Quantity Surveying, INTI International University, Nilai 71800, Malaysia

5. Department of Construction Engineering and Projects Management, Al-Noor University College, Nineveh 41012, Iraq

6. Building and Construction Engineering Department, Technical College of Mosul, Northern Technical University, Mosul 41002, Iraq

7. Department of Civil Engineering, Assiut University, Assiut 71511, Egypt

Abstract

Evaluating the performance of rejuvenated asphalt mixes is crucial for pavement design and construction, as using a rejuvenator not only boosts recycling and contributes to positive effects on the environment but also increases the sensitivity to rutting and moisture. This study was executed to evaluate the effect of a warm mix asphalt (WMA) antistripping agent, namely nano-ZycoTherm, on the moisture-induced damage and rutting potential of asphalt mixtures containing 30% and 60% aged (RAP) binder and rejuvenated with 12% waste engine oil (WEO). For this purpose, the rutting resistance of asphalt mixes in wet and dry conditions was examined utilizing a loaded wheel tracker. In addition, the impacts of moisture on the performance of the mixtures were evaluated using different experiments, such as modified Lottman (AASHTO T283), resilient modulus, dynamic creep, aggregate coating and wheel tracking tests. Fourier transform infrared (FTIR) spectroscopy and thermogravimetric (TG) analysis were performed to identify the functional groups, which would be significant in terms of moisture damage, and to assess the thermal stability of binder samples, respectively. The results revealed that the rejuvenation of aged binder with WEO increases the moisture susceptibility of the mixtures; however, the addition of ZycoTherm was found to enhance the moisture resistance of WEO-rejuvenated mixtures. Furthermore, the results indicated that the WEO-rejuvenated mixtures modified with ZycoTherm exhibited a better rutting resistance in a wet condition compared to that of WEO-rejuvenated and conventional HMA mixtures. However, the rejuvenated mixtures modified with ZycoTherm showed poorer rutting performance in a dry condition. In summary, the adoption of the WMA antistripping agent, RAP binder and WEO rejuvenation techniques demonstrated satisfactory outcomes in terms of rutting resistance and moisture susceptibility, and also, these techniques are much less expensive to implement.

Funder

Universiti Teknologi Malaysia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3