Pathomics and Deep Learning Classification of a Heterogeneous Fluorescence Histology Image Dataset

Author:

Ioannidis Georgios S.ORCID,Trivizakis EleftheriosORCID,Metzakis Ioannis,Papagiannakis Stilianos,Lagoudaki Eleni,Marias KostasORCID

Abstract

Automated pathology image classification through modern machine learning (ML) techniques in quantitative microscopy is an emerging AI application area aiming to alleviate the increased workload of pathologists and improve diagnostic accuracy and consistency. However, there are very few efforts focusing on fluorescence histology image data, which is a challenging task, not least due to the variable imaging acquisition parameters in pooled data, which can diminish the performance of ML-based decision support tools. To this end, this study introduces a harmonization preprocessing protocol for image classification within a heterogeneous fluorescence dataset in terms of image acquisition parameters and presents two state-of-the-art feature-based approaches for differentiating three classes of nuclei labelled by an expert based on (a) pathomics analysis scoring an accuracy (ACC) up to 0.957 ± 0.105, and, (b) transfer learning model exhibiting ACC up-to 0.951 ± 0.05. The proposed analysis pipelines offer good differentiation performance in the examined fluorescence histology image dataset despite the heterogeneity due to the lack of a standardized image acquisition protocol.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3