A Convex Combination Approach for Artificial Neural Network of Interval Data

Author:

Yamaka WoraphonORCID,Phadkantha Rungrapee,Maneejuk Paravee

Abstract

As the conventional models for time series forecasting often use single-valued data (e.g., closing daily price data or the end of the day data), a large amount of information during the day is neglected. Traditionally, the fixed reference points from intervals, such as midpoints, ranges, and lower and upper bounds, are generally considered to build the models. However, as different datasets provide different information in intervals and may exhibit nonlinear behavior, conventional models cannot be effectively implemented and may not be guaranteed to provide accurate results. To address these problems, we propose the artificial neural network with convex combination (ANN-CC) model for interval-valued data. The convex combination method provides a flexible way to explore the best reference points from both input and output variables. These reference points were then used to build the nonlinear ANN model. Both simulation and real application studies are conducted to evaluate the accuracy of the proposed forecasting ANN-CC model. Our model was also compared with traditional linear regression forecasting (information-theoretic method, parametrized approach center and range) and conventional ANN models for interval-valued data prediction (regularized ANN-LU and ANN-Center). The simulation results show that the proposed ANN-CC model is a suitable alternative to interval-valued data forecasting because it provides the lowest forecasting error in both linear and nonlinear relationships between the input and output data. Furthermore, empirical results on two datasets also confirmed that the proposed ANN-CC model outperformed the conventional models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3