Abstract
The surface of a quenched and tempered spring steel may have a decarburized layer from which the carbon component has been reduced. The fatigue strength of the decarburized layer is low compared to the base metal, which can easily develop fatigue cracks. Recently, fatigue failure was reported in the tension clamp (SKL 15) of the DFF-300 rail fastening system during use on one urban transit route in South Korea. As a result of measuring the depth of the decarburized layer of the SKL 15 tension clamp where the fatigue failure occurred, a decarburized layer thinner than the manufacturer’s maximum allowable decarburized layer was found in one of the eight tension clamps. To check the depth of the decarburized layer where the fatigue crack may have initiated, the decarburized layer was assumed to be the initial crack, and fatigue crack initiation was assessed based on the linear elastic fracture mechanics. The manufacturer’s maximum allowable decarburized layer depth of 0.2 mm may result in fatigue cracks.
Funder
Incheon National University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference10 articles.
1. Failure Analysis of Fatigue Cracking in the Tension Clamp of a Rail Fastening System
2. Metal Fatigue;Frost,1974
3. Fundamentals of Metal Fatigue Analysis;Bannantine,1990
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献