Monotonic Functions Method and Its Application to Staging of Patients with Prostate Cancer According to Pretreatment Data

Author:

Gitis ValeriORCID,Derendyaev AlexanderORCID,Petrov KonstantinORCID,Yurkov Eugene,Pirogov Sergey,Sergeeva Natalia,Alekseev Boris,Kaprin Andrey

Abstract

Prostate cancer is the second most frequent malignancy (after lung cancer). Preoperative staging of PCa is the basis for the selection of adequate treatment tactics. In particular, an urgent problem is the classification of indolent and aggressive forms of PCa in patients with the initial stages of the tumor process. To solve this problem, we propose to use a new binary classification machine-learning method. The proposed method of monotonic functions uses a model in which the disease’s form is determined by the severity of the patient’s condition. It is assumed that the patient’s condition is the easier, the less the deviation of the indicators from the normal values inherent in healthy people. This assumption means that the severity (form) of the disease can be represented by monotonic functions from the values of the deviation of the patient’s indicators beyond the normal range. The method is used to solve the problem of classifying patients with indolent and aggressive forms of prostate cancer according to pretreatment data. The learning algorithm is nonparametric. At the same time, it allows an explanation of the classification results in the form of a logical function. To do this, you should indicate to the algorithm either the threshold value of the probability of successful classification of patients with an indolent form of PCa, or the threshold value of the probability of misclassification of patients with an aggressive form of PCa disease. The examples of logical rules given in the article show that they are quite simple and can be easily interpreted in terms of preoperative indicators of the form of the disease.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Survey of Machine Learning Algorithms for Disease Diagnostic

2. Machine Learning in Medicine

3. Machine learning methods for prostate cancer diagnosis;Alkhateeb;J. Cancer,2020

4. A [-2]proPSA-based artificial neural network significantly improves differentiation between prostate cancer and benign prostatic diseases

5. Possibilities of determination of quantitative relationship between the evaluation of clinical condition and functional signs of respiratory insufficiency with the aid of mathematical methods;Vinitskaia;Zhurnal Eksperimental’noi Klin. Meditsiny,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3