Abstract
Today, excessive psychological stress has become a universal threat to humans. That stress can heavily affect work and study when a person repeatedly is exposed to high stress. If that exposure is long enough, it can even cause cardiovascular disease and cancer. Therefore, both monitoring and managing of stress is imperative to reduce the bad outcomes from excessive psychological stress. Conventional monitoring methods firstly extract the characteristics of the RR interval of an electrocardiogram (ECG) from a time domain and a frequency domain, then use machine learning models, like SVM, random forest, and decision tree, to distinguish the level of that stress. The biggest limitation of using these methods is that at least one minute of ECG data and other signals are indispensable to ensure the high accuracy of the results. This will greatly affect the real-time application of the models. To satisfy real-time detection of stress with high accuracy, we proposed a framework based on deep learning technology. The proposed monitoring framework is based on convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM). To evaluate the performance of this network, we conducted the experiments applying conventional methods. The data for the 34 subjects were collected on the server platform created by the group at the Institute of Psychology of the Chinese Academy of Sciences and our group. The accuracy of the proposed framework was up to 0.865 on three levels of stress using a 10 s ECG signal, a 0.228 improvement compared with conventional methods. Therefore, our proposed framework is more suitable for real-time applications
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献