Abstract
Condition monitoring of rotating machinery plays an important role in reducing catastrophic failures and production losses in the 4.0 Industry. Vibration analysis has proven to be effective in diagnosing rotating machine failures. However, identifying bearing defects based on vibration analysis remains a difficult task, especially in non-stationary operation conditions. This work aims to automate the process of identifying bearing defects under variable operating speeds. Based on an order analysis technique, three frequency domain features: Spectrum peak Ratio Outer (SPRO), Spectrum peak Ratio Inner (SPRI), and Spectrum peak Ratio Rolling element (SPRR) are updated to perform with non-stationary signals. The updated features are extracted from vibration data of a real ball bearing system. They are retained to build a predictive multi-kernel support vector machine (MSVM) classification model. Therefore, the effectiveness of the proposed features is evaluated based on the performance of the constructed classifier. The updated features deployed have proven their effectiveness in identifying bearing: outer race, inner race, ball, and combined defects under variable speed conditions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献