Torque Prediction Model of a CI Engine for Agricultural Purposes Based on Exhaust Gas Temperatures and CFD-FVM Methodologies Validated with Experimental Tests

Author:

Bietresato MarcoORCID,Selmo Francesco,Renzi MassimilianoORCID,Mazzetto FabrizioORCID

Abstract

A truly universal system to optimize consumptions, monitor operation and predict maintenance interventions for internal combustion engines must be independent of onboard systems, if present. One of the least invasive methods of detecting engine performance involves the measurement of the exhaust gas temperature (EGT), which can be related to the instant torque through thermodynamic relations. The practical implementation of such a system requires great care since its torque-predictive capabilities are strongly influenced by the position chosen for the temperature-detection point(s) along the exhaust line, specific for each engine, the type of installation for the thermocouples, and the thermal characteristics of the interposed materials. After performing some preliminary tests at the dynamometric brake on a compression-ignition engine for agricultural purposes equipped with three thermocouples at different points in the exhaust duct, a novel procedure was developed to: (1) tune a CFD-FVM-model of the exhaust pipe and determine many unknown thermodynamic parameters concerning the engine (including the real EGT at the exhaust valve outlet in some engine operative conditions), (2) use the CFD-FVM results to considerably increase the predictive capability of an indirect torque-detection strategy based on the EGT. The joint use of the CFD-FVM software, Response Surface Method, and specific optimization algorithms was fundamental to these aims and granted the experimenters a full mastery of systems’ non-linearity and a maximum relative error on the torque estimations of 2.9%.

Funder

Libera Università di Bolzano

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3