Abstract
To obtain low-phase-noise microwave signals with a widely tunable frequency range, an optoelectronic oscillator (OEO) was constructed on the basis of an optically injected semiconductor laser (OISL) for the generation of high-quality microwave signals. Our OEO relied on the effect of wavelength-selective amplification and the period-one (P1) oscillation under optical injection. The signal’s frequency stability, side-mode-suppression ratio (SMSR) and linewidth were optimized by the subharmonic microwave modulation technique in the OEO loop. The experimental results showed that the frequency of the signal obtained by the proposed OEO could be tuned up to 18 GHz. Using the dual-loop OEO structure, the SMSR was increased to 55 dB. Moreover, the phase noise of the obtained microwave signal was lower than −81 dBc/Hz at 1 kHz frequency offset and −119 dBc/Hz at 10 kHz frequency offset. This was achieved by introducing subharmonic microwave modulation in the OEO loop, respectively. Furthermore, via the utilization of a Fabry–Perot laser diode (FP-LD) in the proposed structure, a dual-loop OEO with different dual-frequency configurations (which could be tuned up to 12 and 18 GHz) was obtained.
Funder
National Key Research and Development Project
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stability of Self-Consistent States of Flow in a Short-Circuited Diode in a Mode with a Through Passage of Particles;2021 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo);2021-11-29