Abstract
Dye-sensitized solar cells (DSSCs) emerged in the early 1990s as a promising alternative to the classic silicon-based solar cell due to their unique combination of low cost, ease of fabrication, color palette for building integration, and high efficiency in indoor applications. This review article describes the fabrication and the properties of poly (3,4-ethylenedioxythiophene) (PEDOT)-based catalytic counter electrodes (CEs) for DSSCs. In particular, the electrochemical reactivity PEDOT CEs used in conjunction with alternative redox mediators for DSSCs is outlined. Among alternative redox shuttles, cobalt and copper complexes, as well as totally organic thiolate/disulfide, have been considered. Finally, PEDOT can also be used as a hole conductor material in electrolyte-free solid-state dye-sensitized solar cells. This review clearly shows that the progress in DSSCs development is strongly linked to the introduction of PEDOT as a new counter electrode material.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献