Seepage Mechanism of Tight Sandstone Reservoir Based on Digital Core Simulation Method

Author:

Wu Huaiyu,Dong XisongORCID,Xu Yang,Xiong GangORCID,Shen Zhen,Wang YongORCID

Abstract

Recently, tight sandstone oil has played an increasingly important role in the energy strategies of countries around the world. However, the understanding of a microscopic mechanism is still not clear enough, which has been affecting the improvement of the recovery of tight sandstone oil. In this article, a digital core model was established to simulate the pore network of a physical core with CT scan and difference equations were verified by Fourier counting. Then, a combination of orthogonal tests and cubic digital cores was used to experimentally investigate various parameters including pressure, length, permeability, viscosity, and time. By combining the physical experiments with the digital core methods, it can be observed that the state of the micro-crack affects the conductivity of the core, which may be the decisive reason for changing the pressure gradient. The orthogonal test showed that the sensitivity of the parameters was pressure, length, permeability, time, and viscosity in order. The results of the numerical simulations showed that this method can reveal the seepage mechanism of a tight sandstone reservoir, greatly shortening the experimental time and improving flexibility.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3