Abstract
In this paper, an urban-based path planning algorithm that considered multiple obstacles and road constraints in a university campus environment with an autonomous micro electric vehicle (micro-EV) is studied. Typical path planning algorithms, such as A*, particle swarm optimization (PSO), and rapidly exploring random tree* (RRT*), take a single arrival point, resulting in a lane departure situation on the high curved roads. Further, these could not consider urban-constraints to set collision-free obstacles. These problems cause dangerous obstacle collisions. Additionally, for drive stability, real-time operation should be guaranteed. Therefore, an urban-based online path planning algorithm, which is robust in terms of a curved-path with multiple obstacles, is proposed. The algorithm is constructed using two methods, A* and an artificial potential field (APF). To validate and evaluate the performance in a campus environment, autonomous driving systems, such as vehicle localization, object recognition, vehicle control, are implemented in the micro-EV. Moreover, to confirm the algorithm stability in the complex campus environment, hazard scenarios that complex obstacles can cause are constructed. These are implemented in the form of a delivery service using an autonomous driving simulator, which mimics the Chungbuk National University (CBNU) campus.
Funder
MSIT(Ministry of Science and ICT), Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献