Application of PCA and Classification for Fault Diagnosis of MAB Installed in Petrochemical Plant Process Facilities

Author:

Hwang Se-Yun,Kim Kwang-Sik,Kim Hyung-Jin,Jun Hong-Bae,Lee Jang-HyunORCID

Abstract

In large systems, such as power plants or petrochemical plants, various equipment (e.g., compressors, pumps, turbines, etc.) are typically deployed. Each piece of equipment operates under generally harsh operating conditions, depending on its purpose, and operates with a probability of failure. Therefore, several sensors are attached to monitor the status of each piece of equipment to observe its conditions; however, there are many limitations in monitoring equipment using thresholds such as maximum and minimum values of data. Therefore, this study introduces a technology that can diagnose fault conditions by analyzing several sensor data obtained from plant operation information systems. The equipment for the case study was a main air blower (MAB), an important cooling equipment in the plant process. The driving sensor data were analyzed for approximately three years, measured at the plant. The fault history of the actual process was also analyzed. Due to the large number of sensors installed in the MAB system, a dimension reduction method was applied with the principal component analysis (PCA) method when analyzing collected sensor data. For application to PCA, the collected sensor data were analyzed according to the statistical analysis method and data features were extracted. Then, the features were labeled and classified according to normal and fault operating conditions. The analyzed features were converted with a diagnosis model, by dimensional reduction, applying the PCA method and a classification algorithm. Finally, to validate the diagnosis model, the actual failure signal that occurred in the plant was applied to the suggested method. As a result, the results from diagnosing signs of failure were confirmed even before the failure occurred. This paper explains the case study of fault diagnosis for MAB equipment with the suggested method and its results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3