Texture Development in Aluminum Alloys with High Magnesium Content

Author:

Aryshenskii Evgenii,Hirsch JurgenORCID,Drits Alexander,Konovalov SergeyORCID,Aryshenskii Vladimir,Tepterev Maksim

Abstract

The evolution of texture in the AlMg6Mn0.7 (1565 ch) alloy throughout the entire cycle of its thermomechanical treatment has been studied. Using this alloy as an example, a new way is shown to control the texture development, which is applicable to alloys with high magnesium content. An integrated approach is applied, including optical and electron microscopy, as well as X-ray diffraction analysis, the determination of mechanical properties and texture modeling using algorithms of the crystallographic plasticity theory. All stages of the thermomechanical treatment have been studied, namely the development of the deformation structure out of the as-cast structure in the reversing hot-rolling stand, continuous hot rolling, cold rolling and final recrystallization annealing. The study showed that second phase particles are the main source of recrystallization nuclei at all stages of high temperature thermomechanical treatment. The importance of these particles increases when the Zener-Hollomon parameter increases. To obtain the maximum possible proportion of a random texture, thermomechanical processing must be carried out at high Zener-Hollomon parameters. However, the temperature should not interfere with the complete recrystallization process at the same time. After cold rolling and recrystallization annealing at temperatures equal or greater than 350 °C, a large proportion of random texture is formed, and the properties of the metal are almost isotropic.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3