Fluid Flow and Heat Transfer Behaviors under Non-Isothermal Conditions in a Four-Strand Tundish

Author:

Zhu Mingmei,Peng Sikun,Jiang Kunchi,Luo Jie,Zhong Yong,Tang Ping

Abstract

In the continuous casting process, the fluid flow of molten steel in the tundish is in a non-isothermal state. Because of the geometric shape and process parameters of a multi-strand tundish, the fluid flow behavior of each strand is quite inhomogeneous, and the difference in temperature, composition and inclusion content between each strand is great, which directly affects the quality of the steel products. In this paper, the fluid flow, heat transfer phenomena and inclusion trajectories in a four-strand tundish with and without flow-control devices (FCDs) are investigated using a water model and numerical simulation in isothermal and non-isothermal conditions. The results show that natural convection has a significant influence on the flow pattern and temperature distributions of molten steel in the tundish. Without FCDs, the average residence times of the molten steel in the tundish obtained by the isothermal water model, non-isothermal water model and non-isothermal mathematical model were 251.2 s, 263.3 s and 266.0 s, respectively, and the dead zone volumes were 21.51%, 29.26% and 28.21%, respectively. With FCDs, the average residence times of the molten steel obtained by the isothermal water model, non-isothermal water model and non-isothermal mathematical model were 293.0 s, 304.0 s and 305.2 s, respectively, and the dead zone volumes were 43.98%, 50.23% and 52.78%, respectively. The flow characteristics of the molten steel in the tundish were different between the isothermal and non-isothermal conditions. Compared with isothermal conditions, the numerical simulation results were closer to the water model results in non-isothermal conditions. The trial results showed that the fluid flow in a tundish has a non-isothermal characteristic, and the results in non-isothermal conditions can better reflect the actual fluid flow and heat transfer behaviors of molten steel in a tundish.

Funder

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3