Influence of Supersaturation on Growth Behavior and Mechanical Properties of Polycrystalline 3C-SiC on W Wire Substrate

Author:

Liu Shuai,Luo Xian,Huang Bin,Yang Yanqing

Abstract

As an important reinforcement for metal matrix composites, the microstructure and mechanical properties of W-core SiC filament have drawn increasing attentions among researchers. In this work, the growth behavior of polycrystalline 3C-SiC on W-wire substrate in the chemical vapor deposition (CVD) process and the evolution of mechanical properties in preparation of W-core SiC filament, were investigated as a function of gas-phase supersaturation. Kinetic studies revealed that the growth of 3C-SiC grains was limited by surface reactions at both 850 °C and 1050 °C, and the deposit experienced similar morphological changes from a porous structure to large clusters, with the increase in supersaturation. Structural analyses and mechanical tests show that the production of pores and the amorphous phase with a low supersaturation, of 9.6 × 107 at 850 °C, resulted in a reduction in the modulus and hardness of the polycrystalline deposits, to 270.3 GPa and 33.9 GPa, while the reduced structural defects (e.g., stacking faults and twins) in highly (111) orientated 3C-SiC grains, as well as the improved surface quality obtained with the medium supersaturation of 1.6 × 107 at 1050 °C, enhanced the tensile strength and the Weibull modulus of W-core SiC filament to 2.88 GPa and 11.2, respectively. During the growth of 3C-SiC grains, the variation in structural defects density is controlled by the critical nucleation energy of the two-dimensional (2D) nucleus.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3