Martensite Transformation in Tool Steels under Isostatic Pressure–Implementation of In-Situ Electrical Resistivity Measurements into a Hot Isostatic Press with Rapid Quenching Technology

Author:

Kramer Berenice,Deng Yuanbin,Lentz JonathanORCID,Broeckmann ChristophORCID,Theisen Werner,Weber SebastianORCID

Abstract

Powder metallurgical (PM) parts usually benefit from more homogenous and finer microstructures as opposed to conventionally processed material. In particular, hot isostatic pressing (HIP) combined with near-net-shape technologies can produce almost defect free PM tools with complex geometries. Recent advances in the plant technology of smaller HIP units allow the integration of hardening heat treatments in HIP processes. Thus, additional processing steps, transportation, energy consumption and cost are reduced. However, it is known that high pressure influences phase stability and transformation temperatures. Still, knowledge of the martensite start temperature (MS) is crucial for the design of hardening heat treatment. Since the influence of pressure on MS in HIP heat treatment is insufficiently investigated, it is the aim of this study to deploy a measurement method that allows to record MS as a function of pressure, temperature and cooling rate. Taking the hot working tool steel AISI H11 (X37CrMoV5-1, 1.2343) as the reference material, in this study for the first time the method of an in-situ electrical resistivity measurement was used to measure MS within a HIP. To investigate the influence of HIP pressure on Ms, resulting microstructures and hardness, specimens were austenitized at a temperature of TAUS = 1050 °C for tAUS = 30 min at pAUS = 25, 50, 100 or 150 MPa. Additionally, the MS temperature of the same material was determined by quenching dilatometry at ambient pressure for comparison purposes. Characterization of microstructures was conducted by scanning electron microscopy while hardness as an important technological property of tool steels was measured according to the Vickers method. Furthermore, the CALPHAD method was used to compute the thermodynamic influence of pressure on phase stabilities. The experimental results indicate that the method of in-situ resistivity measurement can be used to measure MS during an integrated HIP heat-treatment process. Besides, a stabilizing effect of pressure on the close packed crystal structure of the austenitic fcc phase is clearly detected, resulting in a reducing influence on the MS temperature of AISI H11 by up to 90 K.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3