The Influence of Precipitation Hardening on the Damping Capacity in Al–Si–Mg Cast Components at Different Strain Amplitudes

Author:

Carneiro Vitor H.,Grilo JoséORCID,Soares DelfimORCID,Duarte IsabelORCID,Puga HélderORCID

Abstract

An A356 alloy is a classic casting light alloy, which is able to be processed into complex geometrical shapes with tailored static and dynamic mechanical properties. As a promising material to reduce fuel and energy consumption in future vehicle designs, there is an interest in understanding the impact of heat treatments on the damping capacity of this alloy. The Granato–Lücke theory is used to detail the forced vibration response in gravity cast A356. It is shown that a solution treatment enhances damping capacity in lower stress states (i.e., strain-independent regime) due to the increase in weak pinning length. However, in high-stress states (i.e., strain-dependent regime), peak-aged (T6) samples display higher damping capacity. This is proposed to be originated by releasing dislocations from weak pinning points, which start bowing in the precipitates that act as strong pinning points. Based on these results, it is shown for the first time that the selection of heat treatments to optimize damping in forced vibration is highly dependent on the expected stress–strain state and must be considered in the design of cast components.

Funder

Fundação para a Ciência e Tecnologia

Centro 2020

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3