Sustainable Recovery, Recycle of Critical Metals and Rare Earth Elements from Waste Electric and Electronic Equipment (Circuits, Solar, Wind) and Their Reusability in Additive Manufacturing Applications: A Review

Author:

Stratiotou Efstratiadis Vasileios,Michailidis NikolaosORCID

Abstract

The demand for high-efficiency, low-energy consumption materials, with high durability and stability, has led to the rapid increase of the demand and prices of Rare Earth Elements (REE). The REE monopoly of some countries has held the shift of humanity towards sustainability and renewable energy sources back. The isolation, recovery, and recycle of REE from waste electric and electronic equipment (WEEE) constitute the disengagement strategy and can lead to significant economic benefits, via sustainability. The introduction of critical raw materials (RM), derived from WEEE, as additives to filaments used for the synthesis of composite materials, employed by Additive Manufacturing (AM) applications, has tremendous potential for the performance and the commercialization of the final products by adding unique characteristics, such as antibacterial properties, enhanced mechanical and magnetic properties, and thermal and electrical conductivity. The low cost of the recycled RM, the small numbers of process stages, and the inception of a zero-waste paradigm, present its upscalability, with a realistic view to its industrial employment. Although there are many articles in literature that have reviewed WEEE recycle, a comprehensive review on the conditions, parameters, procedure flow charts, and novel properties of the final composite materials with regards to every RM is missing.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference127 articles.

1. Electronic waste – an emerging threat to the environment of urban India

2. Geologyhttps://geology.com/articles/rare-earth-elements/

3. Rare Earth Elements and their Useshttps://geology.com/articles/rare-earth-elements

4. Recycling of the rare earth elements

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3