Evaluation of Fracture Strain for Cold Drawn Thin-Walled Steel Tubes via Small Round-Bar Tensile Test

Author:

Matsuno Takashi,Matsuda Tomoko,Shoji Hiroto,Ohata Mitsuru

Abstract

The evaluation of tube burring formability is a crucial task for finding a suitable material for tube-based automobile parts. The local strain at the ductile fracture site (fracture strain) should be evaluated for this purpose. Moreover, a cold-drawn steel tube has a strong anisotropic shaped microstructure and possibly causes anisotropic fracture strain behavior. Based on this background, the study evaluated the axial and hoop directional fracture strains of cold-drawn steel tubes using the small round-bar tensile specimen. The burnished surface ratio on the pierced surface was also investigated for possibility estimation of in-line formability inspection. As a result, three tubes are presented with inferior, nearly the same, and superior hoop directional fracture strains compared with the axial strains, where exceeding 40% deterioration in the hoop direction occurs by a combination of grain elongation and carbide aggregation. The scanning electron micrographs suggest that the microvoid growth and linkage percolated thorough carbides on the elongated grain boundaries. For the piercing test, the 30% fracture strain deterioration resulted in a 4% decrease in the burnished surface ratio on the pierced surface. This result suggested that the estimation of the pierced surface can detect material defects before the actual tube-burring process.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3