Effect of Dissolved Salts on Steady-State Heat Transfer Using Excessive Cooling by Water-Air Mists

Author:

Hernández-Bocanegra Constantin AlbertoORCID,Acosta-González Francisco Andrés,Ramos-Banderas José Ángel,López-Granados Nancy MargaritaORCID

Abstract

This work reports a new finding on the effect of dissolved salts, in water-air mists, on spray heat removal efficiencies from a metallic surface under steady state conditions. The experimental system is based on a calorimeter that measures heat flux removed by water-air mist sprays from 8 mm diameter × 2.5 mm thickness platinum samples heated by electromagnetic induction. During steady-state experiments, a solid-state controller equilibrates automatically the rate of heat generation with the rate of heat removal to reach a constant temperature. Equilibrium temperatures for stepwise T rising include 200 to 1200 °C in steps of 100 °C and then stepwise T that is lowered to 200 °C. The new finding is that, when using soft water-air mist and a high-water impingement density, a lack of temperature control during stepwise T increases was observed when stepping from 200 to 300 °C. This lack of temperature control is associated with a high heat flux and is attributed to the stabilization of the single-phase convection regime when T rising from 200 to 300 °C. Temperature stabilization was again possible only at wall temperatures Tw≥600 °C, at which single-phase convection was not stable. In contrast, when using a hard water-air mist under the same fluid flow conditions, all temperatures were readily reached. This is attributed to the transition from single-phase convection to nucleate boiling regime when T increased from 200 to 300 °C. This transition leads to a decrease in heat flux due to a reduction in the contact area between liquid and the wall surface. Finally, the corresponding boiling curves at high wall temperatures show the importance of heat radiation from the wall to understand the effect of salts during the stable vapor film regime.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3