Abstract
This study presents the thermal and kinetic behavior of Ni58.5Nb41.5, Ni59.5Nb40.5, and Ni60.5Nb39.5 binary glassy alloys. The alloys ingots were obtained through an electric arc furnace and the ribbons using the melt-spinning technique at two different wheel speeds, 8 and 25 m/s. The non-isothermal study was carried out by means of Differential Scanning Calorimetry (DSC) at five different heating rates: 12.5, 15, 17.5, 20, and 22.5 K/min. X-ray Diffraction (XRD) analysis showed a fully glassy phase for all ribbons for all compositions. For both wheel speeds, the ribbons with higher Nb content were significantly thinner than those with less content. The activation energies were calculated from the Kissinger method, showing the tendency Ep1>Ex1>Eg, where Ep1, Ex and Eg denote the activation energies of first peak temperature, the first crystallization onset and glass transition, respectively. The Flynn–Wall–Ozawa model displayed a close correlation with heating rates, ribbon thicknesses, and composition. The Nb content enhanced the glassy stability since the activation energy required for crystallization increased at higher Nb concentrations.
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献