Abstract
An industrial furnace, such as a blast furnace, molten salt furnace and a basic oxygen furnace, is a popular reactor, where the distribution of liquid, flow pattern of the fluid and the velocity of the fluid determine the energy distribution and chemical reaction in the reactor. Taking a furnace as the research object, this paper studies the effects of different inlet velocities, liquid densities and viscosity on bubble and velocity distribution. A three-dimensional mathematical model of the furnace is set up by a numerical simulation, and the volume-of-fluid (VOF) method is used to study the behavior of bubbles. The accuracy of the simulation parameters selected in the simulation calculation is verified by comparing the simulation with the experimental results. The findings show that an excessive or too small an inlet velocity will lead to an uneven distribution of chlorine in the furnace, therefore, an inlet velocity of about 30 m/s is more appropriate. In addition, changing the liquid density has little effect on the bubble and velocity distribution while choosing the appropriate liquid viscosity can ensure the proper gas holdup and fluidity of chlorine in the furnace.
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献