Study on the Effect of Milling Surface Plastic Deformation on Fatigue Performance of 20Cr and TC17 Specimens

Author:

Li Xun,Guo Zhiyuan,Yang Shenliang,Zhang Hongbin,Wang Ziming

Abstract

In addition to the micro-topography of machined surfaces, plastic deformation is an important factor affecting the machined surface integrity and the fatigue performance of specimens. For 20Cr and TC17 materials, the effect law of milling surface plastic deformation on high- and low-cycle fatigue performance of specimens was studied. Experimental results show that the effect law of milling surface plastic deformation on high- and low-cycle fatigue performance of specimens is different. When the high-cycle fatigue life is about 2 × 105 cycles, severe surface plastic deformation can increase the maximum stress suffered by TC17 specimens from 1060 MPa to 1080 MPa; when the low-cycle fatigue life is about 6 × 104 cycles, severe surface plastic deformation can reduce the maximum stress suffered by 20Cr specimens from 680 MPa to 660 MPa. Therefore, severe surface plastic deformation can improve the high-cycle fatigue performance and, on the contrary, it has a negative effect on the low-cycle fatigue performance. Combined with the analysis of the surface integrity index and the fatigue fracture topography of specimens, it is concluded that the machined surface plastic deformation significantly reduces the plastic deformation capacity of surface layer material and enhances the stress concentration phenomenon caused by the surface micro-topography, so that when a specimen is subjected to a large load, it is very easy to make microcracks appear on the machined surface and form the “over-plastic deformation” phenomenon, resulting in a sharp decrease in the low-cycle fatigue performance of specimens. This suggests that the plastic deformation degree of machined surfaces needs to be optimized depending on the magnitude of the working load and the micro-topography.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3