Correlation between Microstructure and Mechanical Properties of Welded Joint of X70 Submarine Pipeline Steel with Heavy Wall Thickness

Author:

Dong Yifan,Liu DenghuiORCID,Hong Liang,Liu Jingjing,Zuo Xiurong

Abstract

This paper aims to study the relationship between the microstructure and the mechanical properties of X70 submarine pipeline steel with 40.5 mm thickness. The microstructure was examined by using optical microscopy, scanning electron microscopy and an electron backscattered diffractometer, while the mechanical properties were examined by using a hardness test, a tensile test, a Charpy impact test and a drop weight tear test (DWTT), respectively. The results show that the base metal (BM) of the pipe has a low yield ratio of 0.83 and an excellent elongation of more than 45%. The DWTT shear area of the steel plate reaches 87%, showing excellent low-temperature toughness. The Charpy impact energy increases when the distance from the fusion line increases, and it reaches a maximum at the BM near the heat-affected zone (HAZ) due to the small martensite-austenite (MA) constituents and fine grains. The concentrated distribution of blocky/slender MA constituents along the prior austenite grain boundaries of the intercritically reheated coarse-grained HAZ and the large MA constituents are the main reasons for the deteriorating impact toughness. Delamination cracks in the DWTT fracture surface only occurred in the midthickness of a sample with a small opening width that spread about 2.1 mm perpendicular to the DWTT fracture surface and were finally arrested at the acicular ferrite clusters containing a high density of high-angle boundaries.

Funder

Henan Provincial Science and Technology Cooperation Project China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3