Effect of Thermomechanical Treatments on Microstructure, Phase Composition, Vickers Microhardness, and Young’s Modulus of Ti-xNb-5Mo Alloys for Biomedical Applications

Author:

Cardoso Giovana Collombaro,Buzalaf Marília Afonso RabeloORCID,Correa Diego Rafael NespequeORCID,Grandini Carlos RobertoORCID

Abstract

The development of new β-Ti alloys has been extensively studied in the medical field in recent times due to their more suitable mechanical properties, such as a relatively low Young’s modulus. This paper analyzes the influence of heat treatments (homogenization and annealing) and hot rolling on the microstructure, phase composition, and some mechanical properties of ternary alloys of the Ti-xNb-5Mo system, with an amount of Nb varying between 0 and 30 wt%. The samples are produced by argon arc melting. After melting, the samples are homogenized at 1000 °C for 24 h and are hot rolled and annealed at 1000 °C for 6 h with slow cooling. Structural and microstructural analyses are made using X-ray diffraction and optical and scanning electron microscopy. Mechanical properties are evaluated by Vickers microhardness and Young’s modulus. The amount of β phase increases after heat treatment and reduces after hot rolling. The microhardness and Young’s modulus of all heat-treated samples decrease when compared with the hot rolled ones. Some samples exhibit atypical Young’s modulus and microhardness values, such as 515 HV for the as-cast Ti-10Nb-5Mo sample, indicating the possible presence of ω phase in the microstructure. The Ti-30Nb-5Mo sample suffers less variation in its phase composition with thermomechanical treatments due to the β-stabilizing effect of the alloying elements. The studied mechanical properties indicate that the annealed Ti-30Nb-5Mo sample has potential for biomedical applications, exhibiting a Young’s modulus value of 69 GPa and a microhardness of 236 HV.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

São Paulo Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3