Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth

Author:

Wang CuiORCID,Zhang Jianliang,Chen Wen,Li Xiaolei,Jiao Kexin,Pang Zhenping,Wang Zhongyi,Wang Tongsheng,Liu Zhengjian

Abstract

The corrosion resistance to molten iron of four kinds of carbon bricks used in blast furnace hearth were investigated to elaborate the corrosion mechanism through the macroscopic and microscopic analysis of carbon bricks before and after reaction and thermodynamic analysis. The macroscopic analysis showed that brick A had the lowest degree of corrosion and highest uniformity at different heights, attributing to its moderate carbon content of 76.15%, main phases of C, Al2O3, SiC, and Al6Si2O13 (mullite), and lower resistance to molten iron infiltration, etc. The microscopic analysis showed that all the carbon bricks had more and larger pores than the original carbon bricks. The phenomena of the iron beads adhering to carbon brick and iron infiltration were observed between the interface of carbon brick and molten iron. In addition, the obvious corrosion process was presented that the carbon matrix was broken and peeled off during the iron infiltration process. For the carbon brick being corroded, the dissolution of carbon was the predominant reaction. The higher the carbon solubility of the molten iron, the easier the corrosion on the carbon brick. Al2O3 and SiC enhanced the corrosion resistance to molten iron of carbon bricks, and SiO2 could react with carbon to form pores as channels for the penetration of molten iron and increase the corrosion on carbon bricks. A higher graphitization degree of carbon bricks was beneficial to lessen their corrosion degree. The corrosion on carbon bricks by molten iron could be attributed to three aspects: carburization, infiltration, and scouring of molten iron. The carburization process of molten iron was the main reaction process. The molten iron infiltration into the carbon bricks facilitated the dissolution of carbon and destroyed the structure and accelerated the corrosion of the carbon bricks. The scouring of molten iron subjected the iron–carbon interface to interaction forces, promoting the separation of the exfoliated fragmented carbon brick from the iron–carbon interface to facilitate a new round of corrosion process.

Funder

National Natural Science Foundation of China

Project of SKLAM

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3