Abstract
Recrystallization can affect the mechanical properties of aluminum alloys by changing the grain structure, and even the secondary recrystallization will cause a sudden change in the grain size in the alloy. In this work, by choosing different annealing treatments on the cold-drawn 5056 aluminum wire, the microstructure evolution in the alloy homogenized at different annealing processes was discussed, and its influence on the mechanical properties was tested. The results demonstrated that the different annealing treatments had a great effect on the recrystallized structure in the 5056 aluminum alloy. During the annealing, it was observed that the recrystallization started at 250 °C and completed at 310 °C, leading to a significant decrease in the mechanical properties. When the temperature was further increased to 530 °C, the secondary recrystallization occurred, and the grain size of the secondary recrystallization was larger than that when the annealing temperature was 560 °C. However, there was only a minor decrease in the mechanical properties. The reasons and laws of the secondary recrystallization are analyzed and discussed in this paper.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Materials Science,Metals and Alloys