Surface Microstructure and Performance of Anodized TZ30 Alloy in SBF Solution

Author:

Liu Kaiyang,Zhou Yixin,Yin Lixia,Shi Yindong,Huang GuangweiORCID,Liu Xiaoyan,Zheng Liyun,Xing Zhenguo,Zhang Xiliang,Liang ShunxingORCID

Abstract

Anodization is performed on the Ti-30Zr-5Al-3V (TZ30) alloy to improve its surface performance. X-ray diffractometer (XRD), scanning electron microscopy (SEM), and Olympus microscope are used to determine the phase constitution, morphology, and thickness of the anodization film (AOF). Tribological tests and electrochemical corrosion experiments are carried out to measure, respectively, the wear behavior and corrosion resistance of AOFs in simulated body fluid (SBF) solution. The microstructure characteristic of the AOF anodized at low voltage (20 V) is composed of compact and loose regions. As the applied voltage increases to 60 V, the compact regions transform progressively into loose regions, and then grow into nanotube regions. Besides, an increase in thickness of the AOF from 8.6 ± 4.61 μm to 20.7 ± 2.18 μm, and a gradual increase in surface microhardness from 364.6 ± 14.4 HV to 818.4 ± 19.3 HV, are also exhibited as the applied voltage increases from 20 V to 60 V. Specimens anodized at 40 V and 60 V have a low friction coefficient (~0.15) and wear rate (~2.2 mg/N/m) in the SBF solution. The enhanced wearability originates from the high hardness and various wear mechanisms. Potentiodynamic polarization curves suggest that the corrosion resistance in the SBF solution of all anodized specimens is greatly improved, thanks to the protection from the anodized TiO2 film.

Funder

Natural Science Foundation of Hebei Province

Department of Education of Hebei Province

Science and Technology Research and Development Projects of Handan City

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3