Thermodynamic Analysis and Experimental Study of Masked Corrosion Protection of 304 Stainless Steel Processed with Nanosecond Pulsed Laser

Author:

Wang Shuming,Tong Han,Wang Dong,Li Xiaohai

Abstract

A three-dimensional finite element model of nanosecond pulsed laser processing is developed, given the variation of thermal physical parameters with temperature during the laser processing of metallic materials. The effect of process parameters on the temperature field is analyzed by simulating the temperature field of 304 stainless steel processed by nanosecond lasers. Temperature is the most sensitive to repetition frequency. The effects of power, spot diameter, scanning speed, and scan line spacing on temperature decrease successively. The quantitative analysis of the relationship between processing parameters and temperature provides a basis for the corrosion-resistant mask processing parameters on the surface of 304 stainless steel. The applicable laser processing parameters are given according to the results of the orthogonal simulation experiments; the masks and experimental studies on corrosion resistance are carried out. Experimental results show that the corrosion potential of the mask increased by a maximum of 326 mV and the corrosion current decreased by a maximum of 479 nA/cm2 in the passivation electrolyte. Localized electrolysis of the material surface is carried out using the mask provided by the corrosion-resistant surface, and thus the micro-patterns of more complex shapes are processed. This study offers a new path for the micro electrolytic processing mask process.

Funder

Education Department of the Heilongjiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3