Abstract
The objective of this work was to investigate the effect of stiffener strength on the failure mode of an outer-stiffened plate subjected to confined blast loading. A relatively rigid box with one open side was designed, to provide a confined space, and the stiffened plate was fixed onto the open side. Various field blast experiments of stiffened plates with different dimensions were conducted. Transducers were placed on typical points to record the overpressure history. The post-explosion deformation was drawn utilizing the 3D scanner technique, and the failure modes of the stiffened plates were examined in detail. The effect of plate thickness, stiffener thickness, stiffener height, and stand-off distance on the failure mode of the stiffened plate is discussed. It was shown that two typical failure modes were observed in the stiffened plates, namely uniform global dome deformation and nonuniform dome deformation, with local lattice along the stiffeners. The transformation of these two deformation modes originated from the relative strength of the stiffener compared to the plate, hence a relative strength factor was proposed to clarify the division.
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献