Magnetic-Field-Induced Strain Enhances Electrocatalysis of FeCo Alloys on Anode Catalysts for Water Splitting

Author:

Liu Heyan,Ren Yanwei,Wang Kai,Mu Xiaoming,Song Shihao,Guo Jia,Yang Xiaojing,Lu Zunming

Abstract

In water splitting, the oxygen evolution reaction (OER) performance of transition metal alloy catalysts needs to be further improved. To solve this problem, the method of an external magnetic field was used to improve the OER catalytic performance of the alloy catalyst. In this paper, FeCo alloys with different composition ratios were prepared by an arc melting method, and OER catalysts with different compositions were obtained by annealing treatment. Under the action of a magnetic field, all three groups of catalysts showed a better catalytic performance than those without a magnetic field. The overpotentials of Fe35Co65, Fe22Co78 and Fe15Co85 at a current density of 20 mA cm−2 were reduced by 12 mV, 6 mV and 2 mV, respectively. It is found that, due to the magnetostrictive properties of FeCo alloys, the catalyst itself will generate strain under the action of a magnetic field, and the existence of strain may be the main reason for the enhanced OER performance of the magnetic field. Therefore, this work provides a new idea for the development of magnetic material catalysts and a magnetic field to improve the performance of catalysts.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3