Affiliation:
1. Department of Architecture and Urban Planning, Bartın University, Ulus, Bartın 74600, Türkiye
2. Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara 06800, Türkiye
3. Department of Geomatics Engineering, Hacettepe University, Beytepe, Ankara 06800, Türkiye
Abstract
Aboveground biomass (AGB) is crucial in forest ecosystems and is intricately linked to the carbon cycle and global climate change dynamics. This study investigates the efficacy of synthetic aperture radar (SAR) data from the X, C, and L bands, combined with Sentinel-2 optical imagery, vegetation indices, gray-level co-occurrence matrix (GLCM) texture metrics, and topographical variables in estimating AGB in the Küre Mountains National Park, Türkiye. Four machine-learning regression models were employed: partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), multivariate linear, and ridge regression. Among these, the PLS regression (PLSR) model demonstrated the highest accuracy in AGB estimation, achieving an R2 of 0.74, a mean absolute error (MAE) of 28.22 t/ha, and a root mean square error (RMSE) of 30.77 t/ha. An analysis across twelve models revealed that integrating ALOS-2 PALSAR-2 and SAOCOM L-band satellite data, particularly the SAOCOM HV and ALOS-2 PALSAR-2 HH polarizations with optical imagery, significantly enhances the precision and reliability of AGB estimations.
Funder
Hacettepe University Scientific Research Projects Coordination Unit
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献