Affiliation:
1. School of Informatics, Aristotle University of Thessaloniki, 54124 Thesssaloniki, Greece
Abstract
Non-intrusive load monitoring systems that are based on deep learning methods produce high-accuracy end use detection; however, they are mainly designed with the one vs. one strategy. This strategy dictates that one model is trained to disaggregate only one appliance, which is sub-optimal in production. Due to the high number of parameters and the different models, training and inference can be very costly. A promising solution to this problem is the design of an NILM system in which all the target appliances can be recognized by only one model. This paper suggests a novel multi-appliance power disaggregation model. The proposed architecture is a multi-target regression neural network consisting of two main parts. The first part is a variational encoder with convolutional layers, and the second part has multiple regression heads which share the encoder’s parameters. Considering the total consumption of an installation, the multi-regressor outputs the individual consumption of all the target appliances simultaneously. The experimental setup includes a comparative analysis against other multi- and single-target state-of-the-art models.
Funder
European Regional Development Fund of the European Union and Greek national funds
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献