Trace Organic Removal during River Bank Filtration for Two Types of Sediment

Author:

Burke Victoria,Schneider Laura,Greskowiak Janek,Baar Patricia,Sperlich AlexanderORCID,Dünnbier Uwe,Massmann Gudrun

Abstract

The process of bank filtration acts as a barrier against many anthropogenic micropollutants, such as pharmaceuticals and industrial products, leading to a substantial improvement of groundwater quality. The performance of this barrier is, however, affected by seasonal influences and subject to significant temporal changes, which have already been described in the literature. Much less is known about spatial differences when considering one field site. In order to investigate this issue, two undisturbed cores from a well-investigated bank filtration field site were sampled and operated in the course of a column study. The ultimate aim was the identification and quantification of heterogeneities with regard to the biodegradation of 14 wastewater derived micropollutants, amongst others acesulfame, gabapentin, metoprolol, oxypurinol, candesartan, and olmesartan. While six of the compounds entirely persisted, eight compounds were prone to degradation. For those compounds that were subject to degradation, degradation rate constants ranged between 0.2 day−1 (gabapentin) and 31 day−1 (valsartan acid). Further, the rate constants consistently diverged between the distinct cores. In case of the gabapentin metabolite gabapentin-lactam, observed removal rate constants differed by a factor of six between the cores. Experimental data were compared to values calculated according to two structure based prediction models.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3