Automatically Controlled Dust Generation System Using Arduino

Author:

Hofstetter DanORCID,Fabian EileenORCID,Dominguez DorianORCID,Lorenzoni A. Gino

Abstract

A dust generator was developed to disperse and maintain a desired concentration of airborne dust in a controlled environment chamber to study poultry physiological response to sustained elevated levels of particulate matter. The goal was to maintain an indicated PM10 concentration of 50 µg/m3 of airborne dust in a 3.7 m × 4.3 m × 2.4 m (12 ft × 14 ft × 8 ft) controlled environment chamber. The chamber had a 1.5 m3/s (3200 cfm) filtered recirculation air handling system that regulated indoor temperature levels and a 0.06 m3/s (130 cfm) exhaust fan that exchanged indoor air for fresh outdoor air. Dry powdered red oak wood dust that passed through an 80-mesh screen cloth was used for the experiment. The dust generator metered dust from a rectangular feed hopper with a flat bottom belt to a 0.02 m3/s (46 cfm) centrifugal blower. A vibratory motor attached to the hopper ran only when the belt was operated to prevent bridging of powdered materials and to provide an even material feed rate. A laser particle counter was used to measure the concentration of airborne dust and provided feedback to an Arduino-based control system that operated the dust generator. The dust generator was operated using a duty cycle of one second on for every five seconds off to allow time for dispersed dust to mix with chamber air and reach the laser particle counter. The control system maintained an airborne PM10 dust concentration of 54.92 ± 6.42 µg/m3 in the controlled environment chamber during six weeks of continuous operation using red oak wood dust. An advantage of the automatically controlled dust generator was that it continued to operate to reach the setpoint concentration in response to changes in material flow due to humidity, partial blockages, and non-uniform composition of the material being dispersed. Challenges included dust being trapped by the recirculation filter and the exhaust fan removing airborne dust from the environmental chamber.

Funder

National Institute of Food and Agriculture

USDA National Institute of Food and Agriculture Federal Appropriations

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3