TOPSIS Method Based on Correlation Coefficient under Pythagorean Fuzzy Soft Environment and Its Application towards Green Supply Chain Management

Author:

Zulqarnain Rana MuhammadORCID,Xin Xiao Long,Siddique Imran,Asghar Khan WaseemORCID,Yousif Mogtaba Ahmed

Abstract

The correlation coefficient between two variables is an important aspect of statistics. The accuracy of assessments of correlation relies on information from a set of discourses. Data collected in statistical studies are often full of exceptions. Pythagorean fuzzy soft sets (PFSS) are a parametrized family of extended Pythagorean fuzzy sets (PFS). They comprise a generalization of intuitionistic fuzzy soft sets which may be used to accurately assess deficiencies and uncertainties in evaluations. PFSS can accommodate uncertainty more competently than intuitionistic fuzzy soft sets and are the most important strategy when dealing with fuzzy information in decision-making processes. Herein, the concept and characteristics of correlation coefficients and the weighted correlation coefficients in PFSS are discussed. We also introduce the Pythagorean fuzzy soft weighted average (PFSWA) and Pythagorean fuzzy soft weighted geometric (PFSWG) operators and discuss their desirable characteristics. A prioritization technique for order preference by similarity to the ideal solution (TOPSIS) under the PFSS environment based on correlation coefficients and weighted correlation coefficients will be introduced. Through the proposed methodology, a technique for decision-making is developed. Additionally, an application of the proposed TOPSIS technique is presented for green supplier selection in green supply chain management (GSCM). The practicality, efficacy, and flexibility of the proposed approach is proved through comparative analyses, drawing upon existing studies.

Funder

This research is partially supported by a grant of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3