Experimental Study of a New Pneumatic Actuating System Using Exhaust Recycling

Author:

Yu QihuiORCID,Zhai Jianwei,Wang QianchengORCID,Zhang XuxiaoORCID,Tan Xin

Abstract

Pneumatic actuating systems are an important power system in industrial applications. Due to exhaust loss, however, pneumatic actuating systems have suffered from a low utilization of compressed air. To recycle the exhaust energy, a novel pneumatic circuit was proposed to realize energy savings through recycling exhaust energy. The circuit consisted of three two-position three-way switch valves, which were used to control the exhaust flows into a gas tank or the ambient environment. This paper introduced the energy recovery configuration and working principles and built a mathematical model of its working process. Then, the mathematical model was verified by experiments. Finally, through experiments in which the air supply pressure, the critical pressure and the volume of the gas tank were regulated, the energy recovery characteristics of the pneumatic actuating system were obtained. Using the new circuit, the experimental results showed that the energy recovery efficiency exceeded 23%. When the air supply pressure was set to 5 bar, 6 bar, and 7 bar, the time required for pneumatic actuation to complete the three working cycles were 5.2 s, 5.3 s, and 5.9 s, respectively. When the critical pressure was set to 0 bar, 0.5 bar, 1 bar, and 1.5 bar, the times for pneumatic actuation to complete the three working cycles were 4.9 s, 5.1 s, 5.2 s, and 5.3 s, respectively. When the volume of the gas tank was set to 2 L, 3 L, 4 L, and 5 L, the number of working cycles was 3, 4, 5, and 6, respectively. This paper provides a new method of cylinder exhaust recycling and lays a good foundation for pneumatic energy savings.

Funder

National Natural Science Foundation of China

State Key Laboratory of Fluid Power and Mechatronic Systems

Outstanding Young Scientists in Beijing

Natural Science Foundation of Inner Mongolia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference32 articles.

1. A review on compressed-air energy use and energy savings

2. A practical control strategy for servo-pneumatic actuator systems

3. Energy Consumption Assessment of Pneumatic Actuating System Including Compressor. International Conference on Compressors and their Systems;Cai,2001

4. Energy Optimal Control of Servo-Pneumatic Cylinders Through Nonlinear Static Feedback Linearization

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3