Torque Ripple Reduction of DTC Based on an Analytical Model of PMSM

Author:

Zhong Zaimin,You Junming,Zhou Shuihua

Abstract

Aiming at the torque ripple problem of direct torque control that is based on space vector pulse width modulation (SVPWM-DTC) caused by the spatial harmonics and magnetic saturation characteristics of permanent magnet synchronous motor (PMSM), a feedforward controller based on an analytical model of PMSM was designed. An analytical motor model taking the spatial harmonics and magnetic saturation characteristics of PMSM into account by reconstructing the numerical solution of magnetic co-energy (MCE) from finite element analysis (FEA) was proposed. Based on that, the optimal stator flux linkage that minimizes the torque ripple is calculated and then a feedforward controller is designed and added to the SVPWM-DTC framework. Simulations and experiments are carried out and the results show that the proposed feedforward controller can effectively reduce the torque ripple of SVPWM-DTC.

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Predictive Controller for PMSM based on Dual-Channel Feedback;Journal of Physics: Conference Series;2024-06-01

2. Performance Analysis of Conventional IPMSM and NCPM Based IPMSM;Clean Technologies;2023-09-21

3. Direct Torque Control Based Jelly Fish Algorithm For Torque Ripple Reduction in Permanent Magnet Synchronous Motor;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

4. A Review on Vibrations in Electric and Hybrid Electric Vehicles;Journal of The Institution of Engineers (India): Series C;2023-02-20

5. Linear Golden Section Speed Adaptive Control of Permanent Magnet Synchronous Motor Based on Model Design;Processes;2022-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3