Evaluation of the Performance of Multi-Source Precipitation Data in Southwest China

Author:

Jiang Xi,Liu YanliORCID,Wu Yongxiang,Wang Gaoxu,Zhang Xuan,Meng Qingbo,Gu Pengfei,Liu Tao

Abstract

The number of precipitation products at the global scale has increased rapidly, and the accuracy of these products directly affects the accuracy of hydro-meteorological simulation and forecast. Therefore, the applicability of these precipitation products should be comprehensively evaluated to improve their application in hydrometeorology. This paper evaluated the performances of six widely used precipitation products in southwest China by quantitative assessment and contingency assessment. The precipitation products were Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis 3B42 version 7 (TRMM 3B42 V7), Global Satellite Mapping of Precipitation (GSMaP MVK), Integrated Multi-satellitE Retrievals for GPM final run (GPM IMERG Final), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network—Climate Data Record (PERSIANN-CDR), Climate Hazards Infrared Precipitation with Stations version 2.0 (CHIRPS V2.0), and the Global Land Data Assimilation System version 2.0 (GLDAS V2.0). From the above six products, the daily-scale precipitation data from 2001 to 2019 were chosen to compare with the measured data of the rain gauge, and the data from the gauges were classified by river basin and elevation. All precipitation products and measured data were evaluated by statistical indicators. Results showed that (1) GPM IMERG Final and CHIRPS V2.0 performed well in the Yarlung Zangbo River (YZ) basin, while GPM IMERG Final and GLDAS V2.0 performed well in the Lantsang River (LS), Nujiang River (NJ), Yangtze River (YT), and Yellow River (YL) basins; (2) in the upper and middle reaches of the YZ basin, GPM IMERG Final and CHIRPS V2.0 were outstanding in all evaluated products; downstream of the YZ basin, all six products performed well; and upstream of the LS and NJ, GPM IMERG Final, TRMM 3B42 V7, CHIRPS V2.0, and GLDAS V2.0 can be recommended as a substitute for measured data; and (3) GPM IMERG Final and GLDAS V2.0 can be seen as substitutes for measured data when elevation is below 4000 m. GPM IMERG Final and CHIRPS V2.0 were recommended when elevation is above 4000 m. This study provides a reference for data selection of hydro-meteorological simulation and forecast in southwest China and also provides a basis for multi-source data assimilation and fusion.

Funder

The National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3